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Nanoscale: Size Matters

Nanoscale = 1-100 nm in at least 1 dimension
Increased surface area = increase reactivity
Unique nanoscale properties
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>1800 Products Use Nanomaterials
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Source: Woodrow Wilson International Center for Scholars'
Project on Emerging Nanotechnologies

(Vance et al., Beilstein J. Nanotechnol. 2015, 6, 1769-1780.)
*No data collected.



Copper-containing Nanoparticles

Zerovalent copper (Cu-NPs)
& copper (Il) oxide (CuO-
NPs)

Applications: filtration
devices, cosmetics,
electrodes, alloys, steel
manufacturing, coatings and
sealants, solar panels, and
remediation of water
contaminants, e.g.
dichloromethane

Cheaper alternative to Ag
(most used NP)




Microbial Interactions with NPs
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Microbial Control

NPs control fouling and
pathogens in various products

Novel antimicrobials

Nano-bio remediation
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Toxicity Mechanisms
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Risk = Hazard X Exposure
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Potential NP Impacts to the Nitrogen Cycle
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Overall Hypothesis

Microbial growth characteristics will affect their
interactions with metal containing NPs. These
sensitivities will affect population & diversity

with time.




Wetlands Contain Diverse
Nitrogen Cycling Microorganisms

!*ulitn:u%n_an cycling in wetlands progresses more rapidly when there
iz a thin oxygenated =soil layer present. A Mifech & Gassalink 1683




Samples Collected from Malibu Lagoon




Impacts of Cu-NPs on Wetland Derived

Microcosms

Metal sources: Cu-NP and CuCl,
Model Systems: Wetland Derived Microcosms

Objective: Determine which environmental nitrogen
cycling microorganisms are most sensitive to Cu-NPs in

mixed communities



Experimental Design and Data Analysis

Water Quality Characteristics

* Nitrate + Conductivity

+ Nitrite + COD

+ Ammonia -+ Total Dissolved Cu
* pH + Total Dissolved Fe

DNA Microarray and Analysis

Sample Collectlon (GeoChip 5. 0)

Malibu Lagoon, CA, USA

Homogenize
Days
Microcosms 0:10. 700 S
ICr
DNA
Extraction
_—
Metatranscriptomic Sequencing and
Analysns (MG-RAST)
Extraction ' Dissimilatory N 023
Control 100 mg/L 100 mg/L Badaction
(0 Copper) Cu-NP  CuCl; Denitrification 043 034
Every 10 days: Ammonification 042 054
* Flush with N2

+ Sucrose (100 mg/L) Nitrogen Fixation 0.33  0.32
* Nitrate (350 mg/L) Assimilation 050 049

o b e Control Cu-NP




Nitrite and Nitrate Accumulated in Copper

Exposed Microcosms
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Soluble Species Released from Cu-NPs
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How Microarrays Work

S
v’l 5\%,\ Wg‘é:scent

Cell lysis

3
5

DNA extraction

Sequence
specific probes

Microarray
chip

Fluorescence



GeoChip 5.0 Probe Distribution

FGA = Functional Gene Array

Other Virus
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Reduced Probe Number & Diversity

for Copper Exposed Microcosms

Probe Number Shannon Index
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PCA Showed Divergence in 100 Day Samples
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Reduced Signal from Nitrogen Cycling and

Electron Transfer genes
A B C CuNP (Day 100)
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DNRA < Nitrogen Fixation < Ammonification
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Impacts to Electron Function, Metal

Homeostasis, and Stress Response
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The Microbial Community was Resilient

after Long-term Exposure to Cu-NPs
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Summary and Significance

Acute exposure to Cu-NPs negatively impact wetland
microbial communities and N-cycling processes.

Accumulation of NO;” + NO,”

Microbial communities demonstrated resilience over
100 days.

Cu-NPs may shape long-term nitrogen
transformation by selecting for resilient and metal-
tolerant N-cycling microorganisms.

Increases in denitrification promote the release of N,O
(~ 300 fold greater global warming potential than CO,).

Decreases in N-fixation combined with increases in
denitrification may limit wetland productivity.
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Geochip Data Processing

Signals analyzed on Online
Geochip Data Analysis
Pipeline

Poor quality spots were

flagged by Imagene or
signal:noise < 2

Normalized signal intensity
normalized by the total
intensity of microarray
followed by dividing by a
constant

http://vpr-norman.ou.edu/sites/vpr-
norman.ou.edu/files/images/JizhongZhou1l-

at least 2 replicates GeoChipPrinting jpg

Probe must be detected in



